

温湿度变送器 (扁卡轨壳485型)

SN-3008-WS-N01 Ver 2.0

目录

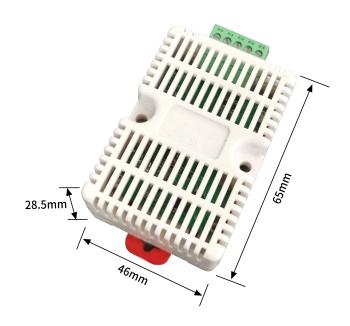
第	1章 产品简介	3
	1.1 产品概述	3
	1.2 功能特点	3
	1.3 主要参数	3
	1.4 系统框架图	4
	1.5 产品选型	5
第	2 章 硬件连接	
	2.1 设备安装前检查	
	2.2 接口说明	
	2.2.1 传感器接线	
	2.3 安装方式	
第		
	3.1 传感器接入电脑	
	3.2 传感器监控软件的使用	
第		
<i>></i> , .	4.1 通讯基本参数	
	4.2 数据帧格式定义	
	4.3 寄存器地址	
	4.4 通讯协议示例以及解释	
笙	5章 常见问题及解决方法	

第 1 章 产品简介

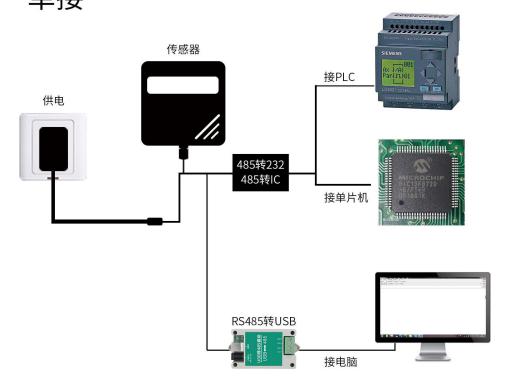
1.1 产品概述

该变送器广泛适用于农业大棚/花卉培养等需要温湿度监测的场合。传感器内输入电源,感应探头,信号输出三部分完全隔离。安全可靠,外观美观,安装方便。

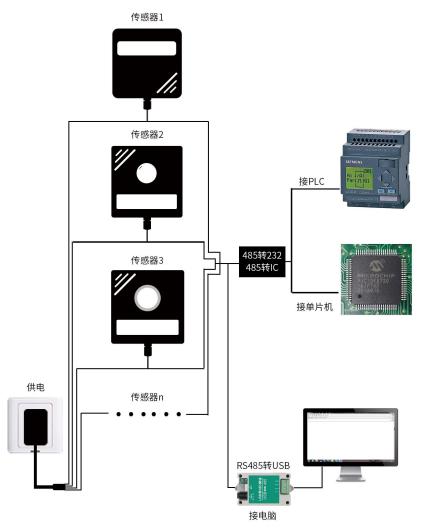
1.2 功能特点


本产品采用高灵敏度数字探头,信号稳定,精度高。具有测量范围宽、线形度好、防水性能好、使用方便、便于安装、传输距离远等特点。

1.3 主要参数


直流电源 (默认)		5-30	V DC	
最大功耗	0.1W			
水丰 庄	湿度	±3%RH (60%RH, 25°C)		
精度	温度	±0.3℃ (25℃)		
变送器电路工作环境温 湿度	-40℃~+85℃,0%RH~85%RH(非凝露)			
温度量程	-40°C~+125°C			
温度显示分辨率	0.1℃			
湿度显示分辨率	0.1%RH			
温湿度刷新时间		1	S	
V. 拥 <i>华 </i>	温度	<u>:</u> -	≤0.1°C/y	
长期稳定性	湿度		≤1%RH/y	
마스 다른 나를	温度		≤25s (1m/s 风速)	
响应时间	湿度		≤8s (1m/s 风速)	
通信协议	ModBus-RTU 通信协议			
输出信号	485 信号		信号	
参数设置	通过软件设置			

扁卡轨: 65×46×28.5mm


1.4 系统框架图 单接

本产品也可以多个传感器组合在一条 485 总线使用,理论上一条总线可以接 254 个 485 传感器,另一端接入带有 485 接口的 PLC、通过 485 接口芯片连接单片机,或者使用 USB 转 485 即可与电脑连接,使用我公司提供的传感器配置工具进行配置和测试(在使用该配置软件时只能接一台设备)。

多接

1.5 产品选型

SN-				公司代号	
	3008-			扁卡轨壳	
		WS-		温湿度	
			N01	485 通讯(ModBus-RTU 协议)	

第 2 章 硬件连接

2.1 设备安装前检查

设备清单:

- 变送器设备1台
- USB 转 485 (选配)
- 合格证、保修卡

2.2 接口说明

电源接口为宽电压电源输入 10-30V 均可。485 信号线接线时注意 A\B 两条线不能接反,总线上多台设备间地址不能冲突。

2.2.1 传感器接线

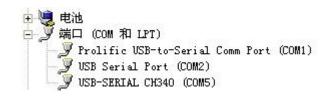
序号	说明	
1	485-A	
2	485-B	
3	电源正(10~30V DC)	
4	电源负	
5	空脚	

2.3 安装方式

特别说明:

- 1) 485 线场布线时有一定的规范要求。
- 2)设备接入485总线时,确保多台设备地址不会重复。

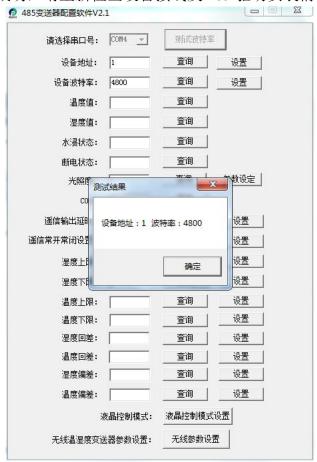
第 3 章 配置软件安装及使用


我司提供配套的"传感器监控软件",可以方便的使用电脑读取传感器的参数,同时灵活的修改传感器的设备 ID 和地址。

注意, 使用软件自动获取时需要保证 485 总线上只有一个传感器。

3.1 传感器接入电脑

将传感器通过 USB 转 485 正确的连接电脑并提供供电后,可以在电脑中看到正确的 COM 口("我的电脑—属性—设备管理器—端口"里面查看 COM端口)。


RS485ControlV 21.exe

打开资料包,选择"调试软件"---"485 参数配置软件",找到 21.exe 打开即可。

如果在设备管理器中没有发现 COM 口,则意味您没有安装 USB 转 485 驱动(资料包中有)或者没有正确安装驱动,请联系技术人员取得帮助。

3.2 传感器监控软件的使用

- ①、配置界面如图所示,首先根据 3.1 章节的方法获取到串口号并选择正确的 串口。
- ②、点击软件的测试波特率,软件会测试出当前设备的波特率以及地址,默认波特率为4800bit/s,默认地址为0x01。
- ③、根据使用需要修改地址以及波特率,同时可查询设备的当前功能状态。
- ④、如果测试不成功,请重新检查设备接线及485驱动安装情况。

第 4 章 通信协议

4.1 通讯基本参数

编码	8 位二进制	
数据位	8 位	
奇偶校验位	无	
停止位	1 位	
错误校验	CRC(冗余循环码)	
波特率	1200bit/s、2400bit/s、4800bit/s、9600bit/s、19200bit/s、38400bit/s、5 7600bit/s、115200bit/s 可设,出厂默认为 4800bit/s。	

4.2 数据帧格式定义

采用 ModBus-RTU 通讯规约,格式如下:

初始结构 ≥4 字节的时间

地址码 = 1 字节

功能码 = 1 字节

数据区 = N 字节

错误校验 = 16 位 CRC 码

结束结构 ≥4 字节的时间

地址码:为变送器的地址,在通讯网络中是唯一的(出厂默认 0x01)。

功能码: 主机所发指令功能指示。

数据区:数据区是具体通讯数据,注意 16bits 数据高字节在前!

CRC 码: 二字节的校验码。

主机问询帧结构:

地址码	码 功能码 寄存器起始地址		寄存器长度 校验码低位		校验码高位	
1字节	1字节	2字节	2 字节	1字节	1 字节	

从机应答帧结构:

地址码	功能码	有效字节数	数据一区	第二数据区	第 N 数据区	校验码
1 字节	1字节	1 字节	2 字节	2 字节	2 字节	2 字节

4.3 寄存器地址

寄存器地址	PLC或组态 地址	内容	支持功能码	说明
0000 H	40001	湿度	0x03	湿度实时值(扩大10倍)
0001 H	40002	温度	0x03	温度实时值(扩大10倍)
0050Н	40081	温度校准值	0x03、0x06	整数(扩大10倍)
0051H	40082	湿度校准值	0x03、0x06	整数(扩大10倍)
07D0 H	42001	设备地址	0x03、0x06	1~254(出厂默认1)
07D1 H	42002	波特率	0x03、0x06	0代表2400
				1代表4800
				2代表9600
				3代表19200
				4代表38400
				5代表57600
				6代表115200
				7代表1200

4.4 通讯协议示例以及解释

举例: 读取设备地址 0x01 的温湿度值

问询帧(16进制):

地址码	地址码 功能码 起始地址		数据长度	校验码低位	校验码高位
0x01	0x03	0x00 0x00	0x00 0x02	0xC4	0x0B

应答帧(16 进制): (例如读到温度为-9.7℃,湿度为 48.6%RH)

地址码	功能码	返回有效 字节数	湿度值	温度值	校验码 低位	校验码高位
0x01	0x03	0x04	0x01 0xE6	0xFF 0x9F	0x1B	0xA0

温度计算:

当温度低于 0 ℃ 时温度数据以补码的形式上传。

温度: FF9F H(十六进制)= -97 => 温度 = -9.7℃

湿度计算:

湿度: 1E6 H (十六进制)= 486 => 湿度 = 48.6%RH

第 5 章 常见问题及解决方法

无输出或输出错误

可能的原因:

- ①、电脑有 COM 口,选择的口不正确。
- ②、波特率错误。
- ③、485 总线有断开,或者 A、B线接反。
- ④、设备数量过多或布线太长,应就近供电,加 485 增强器,同时增加 120Ω终端电阻。
- ⑤、USB 转 485 驱动未安装或者损坏。
- ⑥、设备损坏。