

模拟量转 485 模块 (4 路)

文档版本: V2.0

目录

第一章 产品简介	. 3
1.1 产品概述	. 3
1.2 功能特点	. 3
1.3 主要技术指标	. 3
1.4 设备选型	. 3
1.5 模拟量对应关系表	.4
1.6 设备外观	. 4
第二章 硬件连接	. 5
2.1 设备安装前检查	. 5
2.2 接线说明	. 5
2.3 输入信号接线举例	. 5
2.4 485 现场布线说明	. 5
2.5 安装方式	. 5
第三章 配置软件安装及使用	.6
3.1 软件选择	. 6
3.2 参数配置	. 6
第四章 通信协议	. 8
4.1 通信基本参数	. 8
4.2 数据帧格式定义	. 8
4.3 保持寄存器地址定义	. 8
4.4 通讯协议示例以及解释	.9
4.4.1 读取信号值	.9
4.4.2 读取设备地址	.9
4.4.3 读取设备波特率	10
第五章 常见问题及解决办法	11
5.1 设备无法连接到电脑	11

第一章 产品简介

1.1 产品概述

该模块可采集现场的最多 4 路模拟量信号(4-20mA、0-5V、0-10V),并通过 485 接口标准 ModBus-RTU 通信协议上传。可直接接入现场的 PLC、工控仪表、组态屏或组态软件。 采集精度 12 位分辨率, 0.1% 精度。可广泛应用于工业现场、配电柜等需要模拟量信号采 集的场所。

1.2 功能特点

- 4 路模拟量电流输入 4~20mA。电压输入 0~5V、0~10V
- 12 位分辨率, 0.1%精度 ADC
- 支持标准 ModBus-RTU 通讯协议
- 通信运行指示灯、防死机看门狗
- 带防雷、静电保护 RS485 通讯接口、运放信号隔离
- 地址、波特率、校验位可通过上位机软件设置
- 防反接、过压保护、过流保护、短路保护

1.3 主要技术指标

直流供电(默认)	5-30V			
最大功耗	0.08W (DC12V)			
工作温度	-40°C~+60°C			
AD 转换分辨率	12 位			
采集信号	4~20mA、0~5V、0~10V 可选			
通讯接口	ModBus-RTU			
地址范围	1-254 (默认1)			
	数值范围 0-7			
	0: 2400bps1:4800bps2: 9600bps3: 19200bps4: 38400bps5:			
波符率	57600bps6: 115200bps7: 1200bps			
	默认: 4800bps			

1.4 设备选型

SN-					公司代号		
	3001-				壳体		
		I20-			采集 4~20mA 电流信号		
		V05-			采集 0~5V 电压信号		
		V10-			采集 0~10V 电压信号		
			485-		485 通讯(ModBus 协议)		
				4	采集4路模拟量		

1.5 模拟量对应关系表

类型	采集数据(12位 AD) 计算举例				
		4mA 对应 819 (0mA 对应 0),20mA			
4~20mA	0 4005	对应 4095 例:读取的数据值为 3000,			
(兼容 0-20mA)	0~4095	则测量输出电流信号为			
		(3000/4095)*20mA=14.65mA			
6 .		例:读取的数据值为300,则测量输			
	0~4095	出电流信号为			
0~3 v		(300/4095)*5V=0.37V			
0~10V		例:读取的数据值为1000,则测量输			
	0~4095	出电流信号为			
		(1000/4095)*10V=2.44V			

1.6 设备外观

第二章 硬件连接

2.1 设备安装前检查

设备清单

- 模拟量转 485 模块(4 路)1台
- USB 转 485(选配)

2.2 接线说明

	标识	说明	备注
	VCC	电源输入正	5 20V DC
由	GND	电源输入地	5~30V DC
电源制八及迪信	A+	485-A	495 诵信
	B-	485-В	485 地信
	IN1	模拟量1输入	
	IN2	模拟量2输入	西线制 二线制 网络制通用
信亏输入	IN3	模拟量3输入	网线前、线前、白线前遮用
	IN4	模拟量4输入	
指示灯	RUN	运行指示灯	正常运行时闪烁
	TXD	发送指示灯	向 RS485 总线发送数据时闪烁
	RXD	接收指示灯	从 RS485 总线接收到数据时闪烁

2.3 输入信号接线举例

线制	VCC	GND	IN1	IN2	IN3	IN4	
两线制		空	模拟量输入1	模拟量输入2	模拟量输入3	模拟量输入4	
三线制	设备电	设备电源地	模拟量输入1	模拟量输入2	模拟量输入3	模拟量输入4	
	源正	设备电源地	模拟量输入1	模拟量输入2	模拟量输入3	模拟量输入4	
四线制		模拟量输入负	正	正	正	正	
	红色:	电源正					
接线示	黑色:	电源负					
意图颜	绿色:信号输出或者信号正						
色定义	蓝色:	信号负					

2.4 485 现场布线说明

多个 485 型号的设备接入同一条总线时,现场布线有一定的要求,具体请参考 《485 设备现场接线手册》。

2.5 安装方式

35mm 导轨安装,将产品背后的卡扣固定在导轨条上即可。

第三章 配置软件安装及使用

3.1 软件选择

将传感器通过 USB 转 485 正确的连接电脑并提供供电后,可以在电脑中看到正确的 COM 口("我的电脑一属性一设备管理器一端口"里面查看 COM 端口)。

打开资料包,选择"调试软件"---"485参数配置软件",找到 21.exe 打开即可。

如果在设备管理器中没有发现 COM 口,则意味您没有安装 USB 转 485 驱动(资料 包中有)或者没有正确安装驱动,请联系技术人员取得帮助。

3.2 参数配置

①、配置界面如图所示,首先根据 3.1 章节的方法获取到串口号并选择正确的串口。

②、点击软件的测试波特率,软件会测试出当前设备的波特率以及地址,默认波特率为 4800bit/s,默认地址为 0x01。

③、根据使用需要修改地址以及波特率,同时可查询设备的当前功能状态。

④、如果测试不成功,请重新检查设备接线及485驱动安装情况。

85变送器配置软件V2.1		
请选择串口号: 「СОМ	4 💌 测试波特率	
设备地址: 1		 设置
设备波特率: 480	查询	设置
温度值:		
湿度值:	查询	
水浸状态:	查询	
断电状态:	查询	
光照序		全 数设定
CO		
遥信输出延时 设备地	址:1 波特率:4800	设置
遥信常开常闭设量		设置
湿度上的	海中	设置
湿度下的	WHAE	设置
温度上限:		
温度下限:		设置
湿度回差:	查询	设置
温度回差:		设置
湿度偏差:		设置
温度偏差:		设置
液晶控	制模式: 液晶控制模式;	受置
二代温温度变谱器条		e

第四章 通信协议

4.1 通信基本参数

编码	8 位二进制
数据位	8位
奇偶校验位	无
停止位	1 位
错误校验	CRC(冗余循环码)
波特率	1200~115200bps 可设,出厂默认为 4800bps N.8.1

4.2 数据帧格式定义

采用 ModBus-RTU 通讯规约,格式如下:

初始结构 ≥4 字节的时间

地址码 =1 字节

功能码 =1 字节

数据区 = N 字节

错误校验 =16 位 CRC 码结束结构≥4 字节的时间

地址码:为变送器的地址,在通讯网络中是唯一的(出厂默认 0x01),范围 0x01-0xFE。

功能码: 主机所发指令功能指示。

数据区:数据区是具体通讯数据,注意 16bits 数据高字节在前!

CRC 码:二字节的校验码。

主机问询帧结构:

地址码	功能码	寄存器起始地址	寄存器长度	校验码低字节	校验码高字节
1 字节	1字节	2 字节	2字节	1 字节	1 字节

从机应答帧结构:

地址码	功能码	有效字节数	数据一区	数据二区	数据N区	校验码低字节	校验码高字节
1 字节	1 字节	1 字节	2 字节	2 字节	2 字节	1 字节	1 字节

4.3 保持寄存器地址定义

寄存器地址	PLC 或组态地址	内容	支持功能码	备注
0000 H	40001	1通道模拟量数值	0x03/0x04	范围: 0-4095
0001 H	40002	2通道模拟量数值	0x03/0x04	范围: 0-4095
0002 H	40003	3 通道模拟量数值	0x03/0x04	范围: 0-4095
0003 H	40004	4 通道模拟量数值	0x03/0x04	范围: 0-4095
07D0 H	42001	设备地址	0x03/0x04/0x06	1-254,默认 1

				数值范围: 0-7;
07D1H	42002		波特率 0x03/0x04/0x06	0: 2400bps
		计北京		1: 4800bps
				2: 9600bps
				3: 19200bps
		(双村平		4: 38400bps
				5: 57600bps
				6: 115200bps
				0: 1200bps
				默认: 4800bps

4.4 通讯协议示例以及解释

4.4.1 读取信号值

举例:读取设备地址 0x01 的1、2、3、 4 通道模拟量信号值

问询帧

地址码	功能码	起始地址	数据长度	校验码低字节	校验码高字节
0x01	0x03	0x00 0x00	0x00 0x04	0x44	0x09

应答帧

地址码	功能码	返回有效 字节数	模拟量 1	模拟量 2	模拟量 3	模拟量 4	校验码 低字节	校验码 高字节
0x01	0x03	0x08	0x01 0x2C	0x00 0xC8	0x01 0x2C	0x00 0xC8	0xD8	0x0F

说明**:**

返回第1通道数据为012CH,换算成十进制为300,表示当前模拟量采集数据码值为300。 返回第2通道数据为0x00C8,换算成十进制为200,表示当前模拟量采集数据码值为200。 假如模块为0-5V,码值为3000,则测量出信号为5*3000/4095=3.66V。 假如模块为0-10V,码值为3000,则测量出信号为10*3000/4095=7.33V。 假如模块为4-20mA,码值为3000,则测量出信号为20*3000/4095=14.65mA。

4.4.2 读取设备地址

举例:读取设备地址 0x01 的地址

问询帧

地址码	功能码	起始地址	数据长度	校验码低字节	校验码高字节
0x01	0x03	0x07 0xD0	0x00 0x01	0x84	0x87

应答帧

地址码	功能码	返回有效 字节数	地址码	校验码 低字节	校验码 高字节
0x01	0x03	0x02	0x00 0x01	0x79	0x84

4.4.3 读取设备波特率

举例:读取设备地址 0x01 的波特率

问询帧

地址码	功能码	起始地址	数据长度	校验码低字节	校验码高字节
0x01	0x03	0x07 0xD1	0x00 0x01	0xD5	0x47

应答帧

地址码	功能码	返回有效	地址码	校验码	校验码
		字节数		低字节	高字节
0x01	0x03	0x02	0x00 0x01	0x79	0x84

返回数据中波特率为 0x01,表示波特率为 4800bps。

第五章 常见问题及解决办法

5.1 设备无法连接到电脑

1)电脑有多个 COM 口,选择的口不正确。

2)设备地址错误,或者存在地址重复的设备(出厂默认全部为1)。

3)波特率,校验方式,数据位,停止位错误。

4)主机轮询间隔和等待应答时间太短, 需要都设置在 200ms 以上。

5)485 总线有断开,或者 A、B 线接反。

6)设备数量过多或布线太长,应就近供电,加485增强器,同时增加120Ω终端电阻。

7)USB 转 485 驱动未安装或者损坏。

8)设备损坏