

# 铝壳风速变送器 (485型)

# SN-3000-FSA-N01 Ver 2.0





# 目录

| 第 | 1章 产品简介         | 3 |
|---|-----------------|---|
|   | 1.1 产品概述        | 3 |
|   | 1.2 功能特点        | 3 |
|   | 1.3 主要参数        | 3 |
|   | 1.4 系统框架图       | 4 |
|   | 1.5 产品选型        | 5 |
|   | 1.6 产品外观        | 5 |
| 第 | 2 章 硬件连接        | 6 |
|   | 2.1 设备安装前检查     | 6 |
|   | 2.2 接口说明        | 6 |
|   | 2.2.1 传感器接线     | 6 |
|   | 2.3 安装方式        | 6 |
|   | 2.4 注意事项        | 6 |
| 第 | 3 章 配置软件安装及使用   | 7 |
|   | 3.1 传感器接入电脑     | 7 |
|   | 3.2 传感器监控软件的使用  | 7 |
| 第 | 4 章 通信协议        | 9 |
|   | 4.1 通讯基本参数      | 9 |
|   | 4.2 数据帧格式定义     | 9 |
|   | 4.3 寄存器地址       | 9 |
|   | 4.4 通讯协议示例以及解释1 | 0 |
| 第 | 5 章 常见问题及解决方法1  | 0 |



# 第1章产品简介

#### 1.1 产品概述

SN-3000-FSA-N01 风速变送器,外形小巧轻便,便于携带和组装,三杯设计 理念可以有效获得风速信息,壳体采用优质铝合金型材,外部进行喷塑工艺处理, 具有良好的防腐、防侵蚀等特点,能够保证变送器长期使用无锈琢现象,同时配 合内部顺滑的轴承系统,确保了信息采集的精确性。被广泛应用于温室、环境保 护、气象站、船舶、码头、养殖等环境的风速测量。

#### 1.2 功能特点

- 量程: 0-60m/s, 分辨率 0.1m/s
- 防电磁干扰处理
- 采用底部出线方式、完全杜绝航空插头橡胶垫老化问题,长期使用仍然 防水
- 采用高性能进口轴承,转动阻力小,测量精确
- 全铝外壳,机械强度大,硬度高,耐腐蚀、不生锈可长期使用于室外
- 设备结构及重量经过精心设计及分配,转动惯量小,响应灵敏
- 标准 ModBus-RTU 通信协议, 接入方便

#### 1.3 主要参数

| 直流供电(默认)  | 5~30V DC                            |  |  |
|-----------|-------------------------------------|--|--|
| 最大功耗      | 0.2W(12V供电)                         |  |  |
| 变送器电路工作温度 | -40℃~+60℃,0%RH~95%RH(非结露)           |  |  |
|           | 485 通讯(ModBus)协议                    |  |  |
|           | 数据位长度:8位                            |  |  |
|           | 奇偶校验方式:无                            |  |  |
| 通信接口      | 停止位长度:1位                            |  |  |
|           | 默认 ModBus 通信地址: 1                   |  |  |
|           | 波特率:2400、4800(默认)、9600、19200、38400、 |  |  |
|           | 57600、115200                        |  |  |
| 参数设置      | 用提供的配置软件通过 485 接口进行配置               |  |  |
| 分辨率       | 0.1m/s                              |  |  |
| 测量范围      | 0~60m/s                             |  |  |
| 动态响应时间    | ≤2s                                 |  |  |



| <b>桂</b> 時 | $\pm$ (0.2+0.03V) m/s,@ (0~30m/s,25°C) | V表示 |
|------------|----------------------------------------|-----|
| 相反         | 风速                                     |     |

壳体尺寸:



本产品也可以多个传感器组合在一条 485 总线使用,理论上一条总线可以 254 个 485 传感器,另一端接入带有 485 接口的 PLC、通过 485 接口芯片连接单 片机,或者使用 USB 转 485 即可与电脑连接,使用我公司提供的传感器配置工 具进行配置和测试(在使用该配置软件时只能接一台设备)。



多接



# 1.5 产品选型

| SN- |       |  |     | 公司代号             |
|-----|-------|--|-----|------------------|
|     | 3000- |  |     |                  |
|     | FSA-  |  |     | 铝壳风速             |
|     | N01   |  | N01 | 485(ModBus 协议)输出 |

1.6 产品外观





## 第2章硬件连接

#### 2.1 设备安装前检查

设备清单:

■变送器设备1台

■安装螺丝4个

■合格证、保修卡、接线说明等

■USB 转 485(选配)

■485 终端电阻(选配)

■安装拖片1个

#### 2.2 接口说明

宽电压电源输入 10~30V 均可。485 信号线接线时注意 A\B 两条线不能接反, 总线上多台设备间地址不能冲突。

#### 2.2.1 传感器接线

|   | 线色    | 说明             |
|---|-------|----------------|
| 电 | 棕色    | 电源正(10~30V DC) |
| 源 | 黑色    | 电源负            |
| 通 | 黄(绿)色 | 485-A          |
| 信 | 蓝色    | 485-B          |

#### 2.3 安装方式

采用法兰安装,螺纹法兰连接使风速传感器下部管件牢牢固定在法兰盘上,底盘Ø79.8mm,在Ø68mm的圆周上开四个均Ø6mm的安装孔,使用螺栓将其紧紧固定在支架上,使整套仪器,保持在最佳水平度,保证风速数据的准确性,法兰连接使用方便,能够承受较大的压力。

#### 2.4 注意事项

1.用户不得自行拆卸,更不能触碰传感器芯体,以免造成产品的损坏。

2.尽量远离大功率干扰设备,以免造成测量的不准确,如变频器、电机等, 安装、拆卸变送器时必须先断开电源,变送器内有水进入可导致不可逆转变化。

3.防止化学试剂、油、粉尘等直接侵害传感器,勿在结露、极限温度环境下 长期使用、严防冷热冲击。



# 第3章 配置软件安装及使用

我司提供配套的"485参数配置软件",可以方便的使用电脑读取传感器的参数,同时灵活的修改传感器的设备 ID 和地址。

注意,使用软件自动获取时需要保证 485 总线上只有一个传感器。

#### 3.1 传感器接入电脑

将传感器通过 USB 转 485 正确的连接电脑并提供供电后,可以在电脑中 看到正确的 COM 口("我的电脑— 属性—设备管理器—端口"里面查看 COM 端口)。



打开资料包,选择"调试软件"---"485 参数配置软件",找到 21.exe 打 开即可。

RS485ControlV

如果在设备管理器中没有发现 COM 口,则意味您没有安装 USB 转 485 驱动(资料包中有)或者没有正确安装驱动,请联系技术人员取得帮助。

#### 3.2 传感器监控软件的使用

①、配置界面如图所示,首先根据 3.1 章节的方法获取到串口号并选择正确的串口。

②、点击软件的测试波特率,软件会测试出当前设备的波特率以及地址,默认波 特率为 4800bit/s,默认地址为 0x01。

③、根据使用需要修改地址以及波特率,同时可查询设备的当前功能状态。

④、如果测试不成功,请重新检查设备接线及485驱动安装情况。



| 请选择串口号: COM4 🖃  | 测试波特率    |      |
|-----------------|----------|------|
| 设备地址: 1         |          | 设置   |
| 设备波特率: 4800     |          | 设置   |
| 温度值:            | 查询       |      |
| 湿度值:            | 查询       |      |
| 水浸状态:           | 查询       |      |
| 断电状态:           | 查询       |      |
| 光照序,而时代生星       |          | 争数设定 |
| CO              |          |      |
| 遥信输出延时 设备地址:1 波 | 转率:4800  | 设置   |
| 遥信常开常闭设置        |          | 设置   |
| 湿度上的            | 14-12    | 设置   |
| 湿度下的            | WEAL     | 设置   |
| 温度上限:           | 查询       |      |
| 温度下限:           | 查询       | 设置   |
| 湿度回差:           |          | 设置   |
| 温度回差:           |          | 设置   |
| 湿度偏差:           |          | 设置   |
| 温度偏差:           |          | 设置   |
| 液晶控制模式:         | 液晶控制模式设置 | 5    |
| 无线温湿度变送器参数设置:   | 无线参数设置   | 1    |



# 第4章通信协议

### 4.1 通讯基本参数

| 编码    | 8 位二进制                                                           |
|-------|------------------------------------------------------------------|
| 数据位   | 8 位                                                              |
| 奇偶校验位 | 无                                                                |
| 停止位   | 1 位                                                              |
| 错误校验  | CRC(冗余循环码)                                                       |
|       | 2400bit/s、4800bit/s、9600 bit/s、19200bit/s、38400bit/s、57600bit/s、 |
| 波特率   | 115200bit/s 可设,出厂默认为 4800bit/s                                   |

# 4.2 数据帧格式定义

采用 ModBus-RTU 通讯规约,格式如下:

初始结构 ≥4 字节的时间

地址码 =1 字节

功能码 =1 字节

数据区 =N 字节

错误校验 = 16 位 CRC 码

结束结构 ≥4 字节的时间

地址码:为变送器的地址,在通讯网络中是唯一的(出厂默认 0x01)。

功能码: 主机所发指令功能指示, 本变送器只用到功能码 0x03 (读取寄存器数据)。

数据区:数据区是具体通讯数据,注意 16bits 数据高字节在前!

CRC 码:二字节的校验码。

主机问询帧结构:

| 地址码 | 功能码  | 寄存器起始地址 | 寄存器长度 | 校验码低位 | 校验码高位 |
|-----|------|---------|-------|-------|-------|
| 1字节 | 1 字节 | 2 字节    | 2 字节  | 1 字节  | 1 字节  |

从机应答帧结构:

| 地址码  | 功能码 | 有效字节数 | 数据一区 | 第二数据区 | 第 N 数据区 | 校验码  |
|------|-----|-------|------|-------|---------|------|
| 1 字节 | 1字节 | 1 字节  | 2 字节 | 2 字节  | 2 字节    | 2 字节 |

## 4.3 寄存器地址

| 寄存器地址  | PLC或组态地址 | 内容           | 操作 |
|--------|----------|--------------|----|
| 0000 H | 40001    | 瞬时风速         | 只读 |
|        |          | 上传数据为真实值的10倍 |    |



## 4.4 通讯协议示例以及解释

#### 举例:读取设备地址 0x01 的风速值

问询帧:

| 地址码  | 功能码  | 起始地址      | 数据长度      | 校验码低位 | 校验码高位 |
|------|------|-----------|-----------|-------|-------|
| 0x01 | 0x03 | 0x00 0x00 | 0x00 0x01 | 0x84  | 0x0A  |

应答帧: (例如读到当前风速为 8.6m/s)

| 地址码  | 功能码  | 返回有效字节数 | 当前风速值     | 校验码低位 | 校验码高位 |
|------|------|---------|-----------|-------|-------|
| 0x01 | 0x03 | 0x02    | 0x00 0x56 | 0x38  | 0x7A  |

风速计算:

当前风速: 0056H(十六进制)= 86=> 风速 = 8.6m/s

# 第5章常见问题及解决方法

#### 设备无法连接到电脑

可能的原因:

1)电脑有多个 COM 口,选择的口不正确。

2)设备地址错误,或者存在地址重复的设备(出厂默认全部为1)。

3)波特率,校验方式,数据位,停止位错误。

4)主机轮询间隔和等待应答时间太短, 需要都设置在 200ms 以上。

5)485 总线有断开,或者 A、B 线接反。

6)设备数量过多或布线太长,应就近供电,加 485 增强器,同时增加 120 Ω 终端电阻。 7)USB 转 485 驱动未安装或者损坏。

8)设备损坏。