

吸顶式微波探测器 用户手册 (485 型)

SN-300XD2-WB/HWB-N01 Ver 1.0

目录

1.	产品	l简介	3
	1.1	产品概述	. 3
	1.2	主要技术指标	. 3
	1.3	功能特点	. 3
	1.4	系统框架图	. 4
	1.5	产品选型	. 5
	1.6	产品外观	. 5
3.	安装	与使用说明	. 5
	3.1	设备安装前检查	. 5
	3.2	接线说明	. 5
	3.3	安装说明	. 6
	3.4	使用说明	. 6
	3.5	检测范围图	. 7
4.	配置	软件安装及使用	. 7
	4.1	软件选择	. 7
	4.2	参数设置	. 7
5.	通信	协议	8
	5.1	通讯基本参数	. 8
	5.2	数据帧格式定义	. 8
	5.3	寄存器地址	. 9
	5.4	通讯协议示例以及解释	. 9
6	堂 囚	问题及解冲办法	Q

1. 产品简介

1.1 产品概述

此设备为高稳定性雷达微波探测器。采用先进的信号分析处理技术,具有超高的探测和防误报性能。当有入侵者通过探测区域时,探测器将自动探测区域内人体的活动。如有动态移动现象,则会产生报警,设备为485输出,标准的 ModBus-RTU 协议,可二次开发。产品适合家庭住宅区、楼盘别墅、厂房、仓库、商场、写字楼等场所的安全防范。

1.2 主要技术指标

■ 供电电源: 10~30V DC

■ 功耗: 0.3W

■ 传感器类型: 微波传感器

■ 报警延时: 0-65535s 可调 (报警持续时间)

■ 延时报警:软件设置(发生报警的延时)

■ 工作频率: 24.00~24.25GHz

■ 安装方式: 吸顶

■ 安装高度: 2.5~6m

■ 探测范围: 直径 6m(安装高度 3.6m 时)

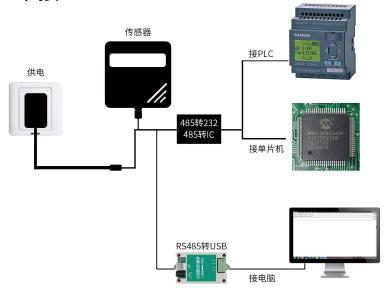
■ 探测角度:全方位 360°

■ 信号输出: RS485

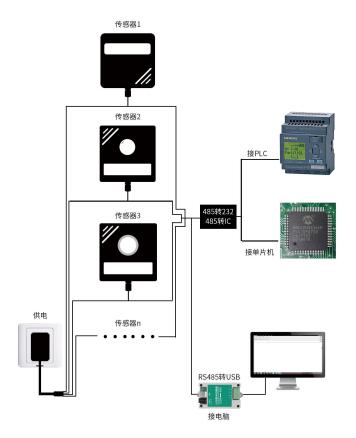
■ 通信协议: ModBus-RTU

■ 工作环境: -20°~50°, ≤95%RH(非结露)

1.3 功能特点


- 采用 8-bit 低功耗 CMOS 处理器
- 具有自动温度补偿功能
- 抗 RFI 干扰: 20~1000MHz(如移动通信)
- 三种报警延时输出可选

设备尺寸:



1.4 系统框架图 单接

本产品也可以多个传感器组合在一条 485 总线使用,理论上一条总线可以 254 个 485 传感器,另一端接入带有 485 接口的 PLC、通过 485 接口芯片连接单片机,或者使用 USB 转 485 即可与电脑连接,使用我公司提供的传感器配置工具进行配置和测试(在使用该配置软件时只能接一台设备)。

多接

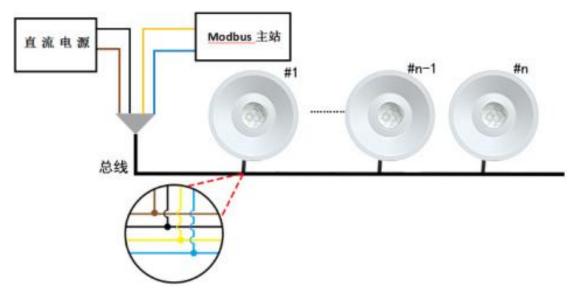
1.5 产品选型

SN-				公司代号
	300XD2-			新款吸顶外壳
		HW-		红外报警器
		WB-		微波报警器
		HWB-		红外微波双鉴报警器
		N01		485 通讯(ModBus 协议)

1.6 产品外观

3. 安装与使用说明

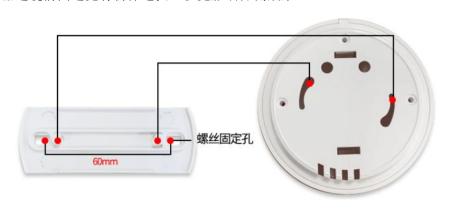
3.1 设备安装前检查


设备清单:

- 主设备1台
- 合格证、接线说明等
- USB 转 485 (选配)

3.2 接线说明

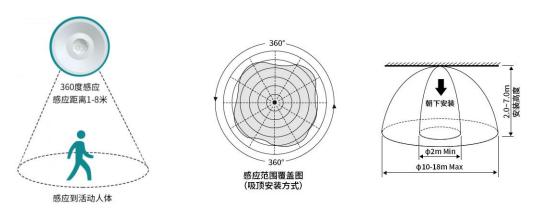
宽电压电源输入 $10\sim30V$ 均可。485 信号线接线时注意 $A\backslash B$ 两条线不能接反,总线上多台设备间地址不能冲突。



线色	说明	备注
棕色	电源正	10~30V DC
黑色	电源负	
黄色	485-A	
蓝色	485-B	

3.3 安装说明

- 1) 选定合适的位置,用螺钉将安装底板固定在天花板上,再将探测器挂上
- 2) 建议安装高度为2.5~6m
- 3) 安装位置应避免靠近空调、电风扇、电冰箱、烤箱及可引起温度迅速变化的物体,同时 应避免太阳光直射在探测器
- 4) 探测器透镜前面避免有物体遮挡,以免影响探测效果

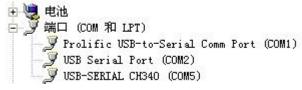

3.4 使用说明

- 1) 按说明接好线, 然后盖上探测器盖盒
- 2) 接通电源,指示灯闪烁,探测器进入自检状态
- 3)60s后指示灯熄灭,探测器进入正常检测状态,此刻如果有人在探测器覆盖区域内走动, LED指示灯亮,同时RS485报警输出

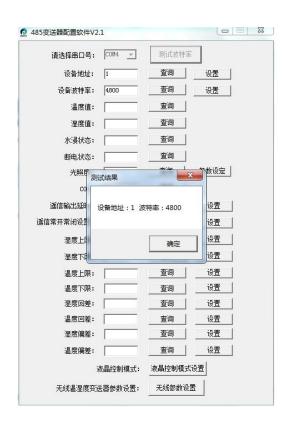
4) LED ON跳帧控制LED指示灯是否有提示,不影响探测器正常工作

3.5 检测范围图

4. 配置软件安装及使用


4.1 软件选择

打开资料包,选择"调试软件"---"485参数配置软件",找到打开即可。


4.2 参数设置

①、选择正确的 COM 口("我的电脑—属性—设备管理器—端口"里面查看 COM 端口),下图列举出几种不同的 485 转换器的驱动名称。

- ②、单独只接一台设备并上电,点击软件的测试波特率,软件会测试出当前设备的波特率以及地址,默认波特率为4800bit/s,默认地址为0x01。
- ③、根据使用需要修改地址以及波特率,同时可查询设备的当前功能状态。
- ④、如果测试不成功,请重新检查设备接线及485驱动安装情况。

5. 通信协议

5.1 通讯基本参数

编码	8 位二进制
数据位	8 位
奇偶校验位	无
停止位	1 位
错误校验	CRC(冗余循环码)
波特率	2400bit/s、4800bit/s、9600 bit/s 可设,出厂默认为 4800bit/s

5.2 数据帧格式定义

采用 ModBus-RTU 通讯规约,格式如下:

初始结构 ≥4 字节的时间

地址码 =1 字节

功能码 = 1 字节

数据区 = N 字节

错误校验 = 16 位 CRC 码

结束结构 ≥4 字节的时间

地址码: 为变送器的地址,在通讯网络中是唯一的(出厂默认 0x01)。

功能码: 主机所发指令功能指示,本变送器只用到功能码 0x03 (读取寄存器数据)。

数据区:数据区是具体通讯数据,注意 16bits 数据高字节在前!

CRC 码: 二字节的校验码。

主机问询帧结构:

地址码	功能码	寄存器起始地址	寄存器长度	校验码低位	校验码高位
1字节	1字节	2字节	2 字节	1 字节	1 字节

从机应答帧结构:

地址码	功能码	有效字节数	数据一区	第二数据区	第 N 数据区	校验码
1 字节	1 字节	1 字节	2 字节	2 字节	2 字节	2 字节

5.3 寄存器地址

寄存器地址	PLC或组态地址	操作	内容
0003 H	40004	只读	报警器状态
			0为正常、1为报警
0033 H	40052	· 读/写	报警延时,默认0s
0033 П	40032	医/ 与	0~65535s可设置

5.4 通讯协议示例以及解释

问询报警器的工作状态

问询帧:

地址码	功能码	起始地址	数据长度	校验码低位	校验码高位
0x01	0x03	0x00 0x03	0x00 0x01	0x74	0x0A

应答帧: 报警器状态报警的应答

地址码	功能码	返回有效字节数	报警器状态	校验码低位	校验码高位
0x01	0x03	0x02	0x00 0x01	0x79	0x84

修改报警延时时间

问询帧:修改延时时间 10s

地址码	功能码	起始地址	修改数值	校验码低位	校验码高位
0x01	0x06	0x00 0x33	0x00 0x0A	0xF9	0xC2

应答帧: 报警器状态报警的应答

地址码	功能码	修改地址	修改数值	校验码低位	校验码高位
0x01	0x06	0x00 0x33	0x00 0x0A	0xF9	0xC2

此时报警延时为 10s, 即当 10s 内连续检测到人体时,设备发生报警。

6. 常见问题及解决办法

设备无法连接到 PLC 或电脑,可能的原因:

1)电脑有多个 COM 口,选择的口不正确。

- 2)设备地址错误,或者存在地址重复的设备(出厂默认全部为1)。
- 3)波特率,校验方式,数据位,停止位错误。
- 4)主机轮询间隔和等待应答时间太短,需要都设置在 200ms 以上。
- 5)485 总线有断开,或者 A、B 线接反。
- 6)设备数量过多或布线太长,应就近供电,加 485 增强器,同时增加 120 Ω 终端电阻。
- 7)USB 转 485 驱动未安装或者损坏。
- 8)设备损坏。