

# 管式土壤墒情监测仪 (485型)

SN-3000-TR-\*-N01 Ver 2.0





## 声明

- 1.本说明书版权归山东塞恩电子科技有限公司(以下简称"本公司")所有,未经本公司书面许可,任何单位或个人不得以任何形式(包括但不限于复制、翻译、存储于数据库或检索系统,或以电子、翻拍、录音等方式进行传播)使用本说明书的全部或部分内容。
- 2.感谢您选用山东塞恩电子科技有限公司的系列产品。为确保您能够更好地使用本公司产品,并避免因操作不当导致的设备故障,请您在使用前仔细阅读本说明书,并严格按照建议方法进行操作。如因用户未按说明使用,或擅自拆卸、更换设备内部组件而造成的任何损失,本公司不承担相关责任。
- 3.本公司始终以科技进步为宗旨,持续致力于产品改进与技术创新。因此,本公司保留随时对产品进行优化和更新而不另行通知的权利。在使用本说明书时,请确认您所持有的是最新有效版本。
- 4.请您妥善保管本说明书,以便在需要时能够及时查阅并获取相关帮助。

山东塞恩电子科技有限公司



# 目录

| 第 | 1 章 产品简介       | 4    |
|---|----------------|------|
|   | 1.1 产品概述       | 4    |
|   | 1.2 功能特点       | 4    |
|   | 1.3 主要参数       |      |
|   | 1.4 系统框架图      | 6    |
|   | 1.5 产品选型       |      |
| 第 | 2 章 硬件连接       | 8    |
|   | 2.1 设备安装前检查    |      |
|   | 2.1.1 安装位置选择   | 8    |
|   | 2.2 安装方式       | 8    |
|   | 2.3 接口说明       |      |
|   | 2.3.1 传感器接线    | 11   |
| 第 | 3 章 配置软件安装及使用  | . 12 |
|   | 3.1 传感器接入电脑    | . 12 |
|   | 3.2 传感器监控软件的使用 | . 12 |
| 第 | 4 章 通信协议       | . 14 |
|   | 4.1 通讯基本参数     | . 14 |
|   | 4.2 数据帧格式定义    |      |
|   | 4.3 寄存器地址      | . 15 |
|   | 4.4 通讯协议示例以及解释 | . 15 |
| 第 | 5章 注意事项        | . 16 |
| 第 |                |      |



## 第 1 章 产品简介

#### 1.1 产品概述

土壤墒情监测仪是一款以介电常数原理为基础的传感器。能够针对不同层次的土壤水分含量以及温度状态进行动态观测,此检测仪最低可检测3层土壤温湿度状态,最高可检测5层土壤温湿度状态,带有倾角设备可以监测土壤的倾斜角度来确定土壤及设备状态。另有高级版管式土壤墒情监测仪,采用灌封制作,可完全防水。

通过该产品可快速、全面的了解土壤墒情信息,科学地制定抗旱调度方案,为正确指挥抗旱救灾提供决策支持,最大限度地减轻灾害损失。产品采用标准的ModBus-RTU485 通信,最远可通信 2000 米,支持二次开发。

产品外壳采用 PVC 塑料管,可良好的穿透近 1GHz 的高频探测波,不会受土壤中盐离子的影响,化肥、农药、灌溉等农业活动不会影响测量结果,并起到对电路进行良好的保护作用。产品采用的倾角传感器测量角度精确、稳定。

产品适用于需检测土壤墒情与旱情信息,或需要实时检测气象、水雨情、墒情、农情、水利工程蓄水引水等场所。

#### 1.2 功能特点

- 产品外壳采用 PVC 塑料管,内部发射近 1GHz 的高频探测波,可以穿透塑料管,有效感知土壤环境。
- 可选择内置倾角传感器实时监测土壤及设备状态。
- 高级版管式土壤墒情监测仪灌封制作,可完全防水。
- 不受土壤中盐离子的影响, 化肥、农药、灌溉等农业活动不会影响测量结果, 数据精准。
- 传感器的电极没有直接与土壤接触,避免电力对土壤及土壤中的植物的干扰。
- 产品采用标准的 ModBus-RTU485 通信模式,最远通信 2000 米。
- 支持 10-30V 宽电压充电。

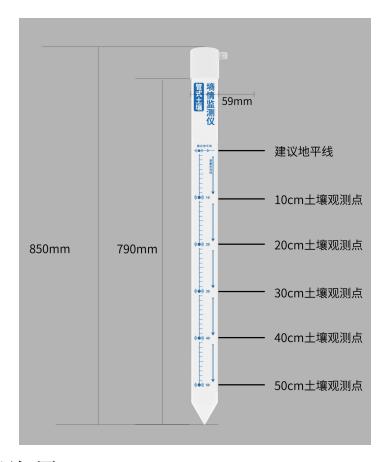
#### 1.3 主要参数

| 工作温度 | -40°C-80°C |                 |  |  |
|------|------------|-----------------|--|--|
|      | 土壤湿度       | 0~100%          |  |  |
| 测量范围 | 土壤温度       | -15℃~35℃        |  |  |
|      | 土壤电导率      | 0-10000μS/cm    |  |  |
| 测量精度 | 土壤湿度       | ±5% (@50%,25°C) |  |  |



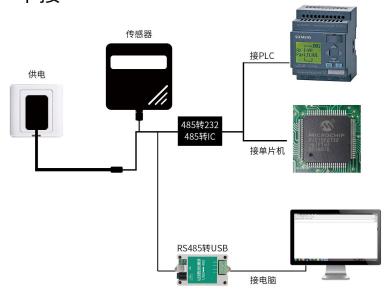
|         |                 | 1             |               |  |  |  |
|---------|-----------------|---------------|---------------|--|--|--|
|         | 土壤温度            |               | ±0.5℃ (25℃)   |  |  |  |
|         | 1 1-2-1 . 1 - 3 | $\pm 3\%$ FS; |               |  |  |  |
|         | 土壤电导率           | (棕壤           | £, 60%, 25°C) |  |  |  |
| 测点间距    |                 | 10cm          |               |  |  |  |
| 供电方式    | 10-30V 宽直流供电    |               |               |  |  |  |
| 外壳使用    |                 | DIAC XE       | PVC 塑料管       |  |  |  |
| 材料      |                 | 2科官           |               |  |  |  |
| 防护等级    |                 | 地面以下部分 IP68   |               |  |  |  |
| 输出信号    |                 | RS485(Mod     | Bus 协议)       |  |  |  |
| T-1, ±1 | 三层              |               | 0.75W         |  |  |  |
| 功耗      | 五层              |               | 1W            |  |  |  |
| 响应时间    | ≤60s            |               |               |  |  |  |

以上陈述的性能数据是在使用我公司测试系统及软件的测试条件下获取的。为了持续改进产品,我公司保留更改设计功能和规格的权利,恕不另行通知。


#### 设备外观图:



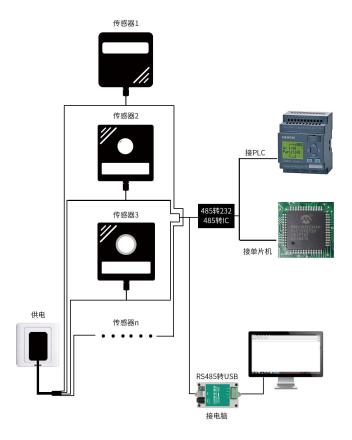
#### 设备尺寸与检测高度:


产品采用分层设点的观测结构,地面配置一个温度观测点,地下土壤每隔 10cm 配置一个土壤温湿测点,观测相对应范围内的土壤温湿度。如下图所示:





# 1.4 系统框架图


## 单接



本产品也可以多个传感器组合在一条 485 总线使用,理论上一条总线可以 254 个 485 传感器,另一端接入带有 485 接口的 PLC、通过 485 接口芯片连接单片机,或者使用 USB 转 485 即可与电脑连接,使用我公司提供的传感器配置工具进行配置和测试(在使用该配置软件时只能接一台设备)。



## 多接



# 1.5 产品选型

| SN- |       |     |        |     | 公司代号               |
|-----|-------|-----|--------|-----|--------------------|
|     | 3000- |     |        |     |                    |
|     |       | TR- |        |     | 土壤检测外壳             |
|     |       |     | 3S3E   |     | 检测 3 层土壤湿度和 3 层电导率 |
|     |       |     | 4S4E   |     | 检测 4 层土壤湿度和 4 层电导率 |
|     |       |     | 5S5E   |     | 检测 5 层土壤湿度和 5 层电导率 |
|     |       |     | 3W3S3E |     | 检测3层土壤温湿度和3层电导率    |
|     |       |     | 4W4S4E |     | 检测4层土壤温湿度和4层电导率    |
|     |       |     | 5W5S5E |     | 检测5层土壤温湿度和5层电导率    |
|     |       |     |        | N01 | RS485(ModBus 协议)   |



## 第 2 章 硬件连接

#### 2.1 设备安装前检查

设备清单:

- 管式土壤墒情监测仪一台
- USB 转 485 一台(选配)
- 合格证
- 土钻(选配)

自行准备清单:

■ 水、水桶、手套(按照个人需求选择)

#### 2.1.1 安装位置选择

- 在作物播种后进行设备安装:
- 安装位置需要地势平坦;
- 全面灌溉条件下,优先选择获水较少区域作为监测位置;局部灌溉条件下,选择湿润区域内作为监测位置;
- 选取作物长势均衡并可代表绝大多数作物长势的位置;
- 了解被监测作物的根系分布,一般选择离作物吸水根系较近的位置。

注意:设备安装地点应选择地势相对较高处,防止雨水倒灌进设备内部从而引起设备短路或线路故障。

## 2.2 安装方式

#### 第一步: 使用土钻在合适的位置打孔

- 1.将土钻竖直于地面,双手紧握手柄顺时针下压慢速转动。(注意:不要太用力,务必慢速多转几圈,防止钻头跑偏至孔洞打歪)
- 2. 将取土钻从孔洞中取出,放入桶中将土钻中的土收集到桶中用以下一步和泥浆。(注意:因为第一钻土因为杂质过多故不做收集)
- 3. 反复持续上述打孔、取土,并在此过程中尝试性地将传感器轻放入孔洞中(请勿将设备用力触底),以测试孔洞的深度是否合适;若有卡顿,则使用土钻修正,保证传感器放入、取出都比较顺畅;直到孔深与传感器所标识的安装位置齐平,打孔完成。





#### 第二步:制作泥浆

1.挑出土钻取出的土壤中的杂质,石子、草根、不容易溶解的土块等。将土壤搓细,以便和泥浆。

2.倒入适量水,充分搅拌至粘稠状,壤土泥浆一般不能稠于"芝麻酱"状,和泥浆完成。



#### 第三步: 灌浆安装

- 1. 将泥浆缓慢倒入孔洞,大概到孔洞 1/2 的位置;可根据实际情况酌情增减。
- 2. 将传感器慢慢放入孔洞中,向一个方向慢慢转动并下压,速度过快可能会导致气泡不能被完全排出。(注意:再转动下压的过程中不可以上拔传感器,



#### 防止气体再次吸入孔中)

3.当传感器安装到正确的深度后,设备周围会溢出一些泥浆,灌浆完成;此时传感器安装深度与洞口齐平。(注意:将传感器周围 3cm 以外多余的泥浆清除,防止结块影响水分下渗)



#### 第四步:安装完成

将设备接好电源线和 485 通信线上电后,设备会发出一声滴的声音后即设备 开机,即可正常工作。建议在泥浆恢复正常状态后再进行正常工作。

其他注意事项:

#### 砂土安装要点

砂土安装与壤土标准安装步骤无异,需要注意的是需准备足量的水,不少于5L;在灌浆之前,先把水倒入孔洞中,淋湿整个洞壁,直到孔洞底部有多余的水出现为止。然后按照步骤,将泥浆慢慢倒入孔洞中,大概大概到孔洞 1/2 的位置。其余安装步骤参照壤土的安装即可。

#### 黏土安装要点

黏土的安装在打孔收集土壤完毕之后,清理杂质后,将黏土在水中浸泡大于4小时,使黏土软化,便于和成比较均匀的泥浆。浸泡完成后搅拌成粘稠状,灌浆即可。其余安装步骤参照壤土的安装即可。





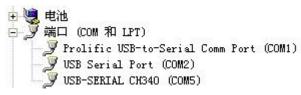
## 2.3 接口说明

电源接口为宽电压电源输入 10-30V 均可。485 信号线接线时注意 A\B 两条线不能接反,总线上多台设备间地址不能冲突。

## 2.3.1 传感器接线

|   | 线色    | 说明             |  |  |
|---|-------|----------------|--|--|
| 电 | 棕色    | 电源正(10~30V DC) |  |  |
| 源 | 黑色    | 电源负            |  |  |
| 通 | 黄(绿)色 | 485-A          |  |  |
| 信 | 蓝色    | 485-B          |  |  |




## 第 3 章 配置软件安装及使用

我公司提供配套的"485参数配置软件",可以方便的使用电脑读取传感器的参数,同时灵活的修改传感器的设备 ID 和地址。

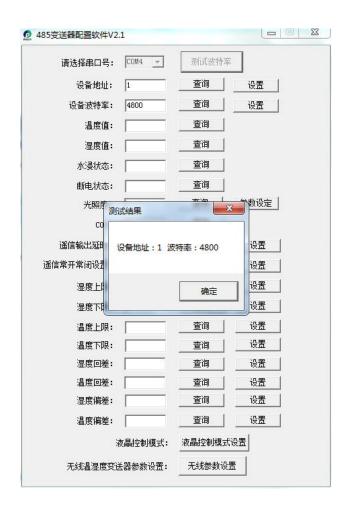
注意,使用软件自动获取时需要保证 485 总线上只有一个传感器。

#### 3.1 传感器接入电脑

将传感器通过 USB 转 485 正确的连接电脑并提供供电后,可以在电脑中看到正确的 COM 口("我的电脑—属性—设备管理器—端口"里面查看 COM端口)。






打开资料包,选择"调试软件"---"485 参数配置软件",找到 21.exe 开即可。

如果在设备管理器中没有发现 COM 口,则意味您没有安装 USB 转 485 驱动(资料包中有)或者没有正确安装驱动,请联系技术人员取得帮助。

#### 3.2 传感器监控软件的使用

- ①、配置界面如图所示,首先根据 3.1 章节的方法获取到串口号并选择正确的串口。
- ②、点击软件的测试波特率,软件会测试出当前设备的波特率以及地址,默认波特率为4800bit/s,默认地址为0x01。
- ③、根据使用需要修改地址以及波特率,同时可查询设备的当前功能状态。
- ④、如果测试不成功,请重新检查设备接线及485驱动安装情况。







## 第 4 章 通信协议

## 4.1 通讯基本参数

| 编 码   | 8 位二进制                                            |
|-------|---------------------------------------------------|
| 数据位   | 8 位                                               |
| 奇偶校验位 | 无                                                 |
| 停止位   | 1 位                                               |
| 错误校验  | CRC(冗余循环码)                                        |
| 波特率   | 2400bit/s、4800bit/s、9600 bit/s 可设,出厂默认为 4800bit/s |

## 4.2 数据帧格式定义

采用 ModBus-RTU 通讯规约,格式如下:

初始结构 ≥4 字节的时间

地址码 = 1 字节

功能码 = 1 字节

数据区 = N 字节

错误校验 = 16 位 CRC 码

结束结构 ≥4 字节的时间

地址码:为变送器的地址,在通讯网络中是唯一的(出厂默认 0x01)。

功能码: 主机所发指令功能指示, 本变送器只用到功能码 0x03 (读取寄存器数

据)。

数据区:数据区是具体通讯数据,注意 16bits 数据高字节在前!

CRC 码: 二字节的校验码。

#### 主机问询帧结构:

| 地址码  | 功能码 | 寄存器起始地址 | 寄存器长度 | 校验码低位 | 校验码高位 |
|------|-----|---------|-------|-------|-------|
| 1 字节 | 1字节 | 2字节     | 2 字节  | 1字节   | 1字节   |

#### 从机应答帧结构:

| 地址码 | 功能码 | 有效字节数 | 数据一区 | 第二数据区 | 第 N 数据区 | 校验码  |
|-----|-----|-------|------|-------|---------|------|
| 1字节 | 1字节 | 1 字节  | 2 字节 | 2 字节  | 2 字节    | 2 字节 |



## 4.3 寄存器地址

| 寄存器地址  | PLC或组态<br>地址 | 内容                      | 功能码 (16 进制) |
|--------|--------------|-------------------------|-------------|
| 0000 H | 40001        | 第一层土壤湿度(实际值的10倍)        | 03/04       |
| 0001 H | 40002        | 第一层土壤温度(实际值的10倍)        | 03/04       |
| 0002 H | 40003        | 第一层土壤电导率值(原始值)          | 03/04       |
| 0003 H | 40004        | 第二层土壤湿度(实际值的10倍)        | 03/04       |
| 0004 H | 40005        | 第二层土壤温度(实际值的10倍)        | 03/04       |
| 0005 H | 40006        | 第二层土壤电导率值(原始值)          | 03/04       |
| 0006 H | 40007        | 第三层土壤湿度(实际值的10倍)        | 03/04       |
| 0007 H | 40008        | 第三层土壤温度(实际值的10倍)        | 03/04       |
| 0008 H | 40009        | 第三层土壤电导率值(原始值)          | 03/04       |
| 0009 H | 40010        | 第四层土壤湿度(实际值的10倍)        | 03/04       |
| 000A H | 40011        | 第四层土壤温度(实际值的10倍)        | 03/04       |
| 000B H | 40012        | 第四层土壤电导率值(原始值)          | 03/04       |
| 000C H | 40013        | 第五层土壤湿度(实际值的10倍)        | 03/04       |
| 000D H | 40014        | 第五层土壤温度(实际值的10倍)        | 03/04       |
| 000E H | 40015        | 第五层土壤电导率值(原始值)          | 03/04       |
| 07D0 H | 42001        | 地址                      | 03/04/06/10 |
| 07D1 H | 42002        | 波特率(0 代表 2400 1 代表 4800 | 03/04/06/10 |
|        |              | 2代表9600 bit/s)          |             |

## 4.4 通讯协议示例以及解释

#### 举例: 读取设备地址 0x01 的第一层土壤温度水分值

问询帧(16进制):

| 地址码 功能码 起始地址 |      | 数据长度      | 校验码低位     | 校验码高位 |      |
|--------------|------|-----------|-----------|-------|------|
| 0x01         | 0x03 | 0x00 0x00 | 0x00 0x02 | 0xC4  | 0x0B |

应答帧(16进制): (例如读到温度为-10.1℃,水分为65.8%)

| 地址码  | 功能码  | 返回有效字节数 | 水分值       | 温度值       | 校验码低位 | 校验码高位 |
|------|------|---------|-----------|-----------|-------|-------|
| 0x01 | 0x03 | 0x04    | 0x02 0x92 | 0xFF 0x9B | 0x5A  | 0x3D  |

温度计算:

当温度低于 0 ℃ 时温度数据以补码的形式上传。



温度: FF9B H(十六进制)=-101=>温度 =-10.1℃

水分: 0292 H(十六进制) = 658 = >水分= 65.8%

## 第 5 章 注意事项

) 警告: 人身伤害风险

严禁将此设备用作安全装置、紧急停止装置,或用于任何可能因设备故障导致人身伤害的场合。

2) 使用限制

本设备仅限按其设计用途及授权范围内使用。

在安装、操作或维修前, 必须仔细阅读并理解技术手册中的相关说明。

未遵守上述警告和指引可能导致死亡或严重人身伤害。

## 第 6 章 质保说明

本产品自购买之日起,享有 12 个月的质保期(以有效购买凭证为准)。在 质保期内正常使用和维护的情况下,若因产品材料或工艺缺陷导致故障,经本公 司检测确认后,我们将提供免费的维修或零件更换服务。质保期结束后,我们仍 将为您提供终身的有偿维修服务。

符合以下情况之一则不在质保范围内:

- 1. 产品因错误安装,操作而导致设备损坏。
- 2. 曾经由非本公司的技术人员拆卸、修理、改动、改装或用户自行更换设备内任何部件。
- 3. 疏忽使用或被水、其他物质掺入设备内造成损坏。
- 4. 意外事件自然灾害导致的故障或损坏。
- 5. 超出产品参数中列出的工作参数范围导致的故障或损坏。