

土壤水势传感器 使用说明书 (485型)

SN-3001-TR-SWP-N01 Ver 2.0

1

目录

第1章产品简介5
1.1 产品概述5
1.2 功能特点5
1.3 主要参数
1.4 系统框架图
1.5 产品选型7
第2章硬件连接
2.1 设备安装前检查8
2.2 接口说明
2.2.1 传感器接线
2.3 使用方法
第3章 配置软件安装及使用10
3.1 传感器接入电脑 10
3.2 传感器监控软件的使用10
第4章通信协议12
4.1 通讯基本参数 12
4.2 数据帧格式定义12
4.3 寄存器地址
4.4 通讯协议示例以及解释13
第5章常见问题及解决方法14

第1章产品简介

1.1 产品概述

土壤水势是指在等温等压条件下,将单位数量的纯水从一个标准状态(通常 是指压力为一个大气压、温度为 25℃、与土壤水处于同一高度的纯水池)转移 到土壤中某一点所做的功(所需要的能量)。

我公司土壤水势传感器是一款专为测量土壤水势而设计的专业设备。传感器运用先进的感应技术,通过内置的敏感元件与土壤水分建立能量平衡。当土壤水势发生变化时,敏感元件会感知到相应的压力或张力改变。能够实时监测土壤中水分的能量状态,以直观数据形式呈现土壤水分的有效性,帮助用户准确把握土壤水分状况,为科学灌溉、农业生产管理以及生态环境研究等提供关键数据支持。

1.2 功能特点

■精准可靠:免标定设计,快速部署,减少环境干扰

■结实耐用:灌封工艺保证其适合野外长期监测研究。

■稳定性强:具备良好的抗干扰能力,能适应复杂多变的野外环境和长期连续工作。在不同温度、湿度条件下,依然能保持稳定性能
■安装便捷:设计紧凑,体积小巧,便于安装与携带

1.3 主要参数

直流供电(默认)	5-30V
最大功耗	0.25W (DC12V)
工作温度	-40°C~+60°C
量程	-5~-100kPa
分辨率	0.1kPa
精度	土(10%当前读数+2kPa)
防护等级	IP68
默认线缆长度	2m,线缆长度可按要求定制
外形尺寸	45*15*123mm
输出信号	RS485(ModBus 协议)

外形尺寸:

本产品也可以多个传感器组合在一条 485 总线使用,理论上一条总线可以接 254 个 485 传感器,另一端接入带有 485 接口的 PLC、通过 485 接口芯片连接单 片机,或者使用 USB 转 485 即可与电脑连接,使用我公司提供的传感器配置工 具进行配置和测试(在使用该配置软件时只能接一台设备)。

多接

1.5 产品选型

SN-					公司代号
	3001-				
		TR-			外壳
			SWP-		土壤水势变送器
				N01	RS485(ModBus-RTU 协议)

第2章硬件连接

2.1 设备安装前检查

设备清单:

- 土壤水势变送器设备1台
- 合格证
- USB 转 485(选配)

2.2 接口说明

宽电压电源输入范围 10~30V 均可。485 信号线接线时注意 A/B 两条线不能接反,总线上多台设备间地址不能冲突。

2.2.1 传感器接线

线色	说明	备注
棕色	电源正	10~30V DC
黑色	电源负	GND
黄色	485A	485-A
蓝色	485B	485-B

2.3 使用方法

1.安装前准备

检查设备完整性: 土壤水势传感器及其配件是否齐全、有无损坏。

准备工具:准备好安装所需的工具,如螺旋钻、铲子和水(用于湿润土壤或制作 泥浆)等。

确定安装位置和深度:根据用户需求,选择合适的安装位置,一般选择离植物吸水根系较近位置。根据土壤类型和测量需求确定传感器的安装深度,通常为 30 厘米及以上。

2.安装传感器

钻孔或挖坑:使用螺旋钻或铲子在选定的位置挖掘一个深度合适的孔或坑,深度 需达到计划的传感器安装深度。

处理传感器:将采集的原位土壤加水制成泥浆或直接湿润土壤。将传感器裹满湿 土或泥浆,插入挖好的孔或坑;如果是在较深的位置安装,将传感器缓慢放入孔 或坑中,然后向孔或坑中缓慢倒入制成的泥浆,目的是让传感器测量部分和土壤 充分接触。

3.连接与测试

8

连接线缆:将传感器的线缆连接到数据采集设备上,确保连接牢固。 测试传感器:在回填土壤之前,使用数据记录器的相关功能测试检查传感器是否 正常工作,是否能够准确测量和传输数据。

4.回填与保护

回填土壤:确认传感器工作正常后,将挖出的土壤回填到孔或坑中,将土壤压实, 使其恢复到原始状态,确保土壤与传感器紧密接触。

第3章 配置软件安装及使用

我司提供配套的"485参数配置软件",可以方便的使用电脑读取传感器的参数,同时灵活的修改传感器的设备 ID 和地址。

注意,使用软件自动获取时需要保证 485 总线上只有一个传感器。

3.1 传感器接入电脑

将传感器通过 USB 转 485 正确的连接电脑并提供供电后,可以在电脑中 看到正确的 COM 口("我的电脑一 属性一设备管理器一端口"里面查看 COM 端口)。

打开资料包,选择"调试软件"---"485参数配置软件",找到 ^{21.exe}打 开即可。

RS485ControlV

如果在设备管理器中没有发现 COM 口,则意味您没有安装 USB 转 485 驱动(资料包中有)或者没有正确安装驱动,请联系技术人员取得帮助。

3.2 传感器监控软件的使用

①、配置界面如图所示,首先根据 3.1 章节的方法获取到串口号并选择正确的串口。

②、点击软件的测试波特率,软件会测试出当前设备的波特率以及地址,默认波 特率为 4800bit/s,默认地址为 0x01。

③、根据使用需要修改地址以及波特率,同时可查询设备的当前功能状态。

④、如果测试不成功,请重新检查设备接线及485驱动安装情况。

⑤点击相应的气体,可直接查看气体当前实时数值

⑥注意:此软件只可设置 1200bit/s、2400bit/s、4800bit/s、9600bit/s、19200bit/s、38400bit/s、57600bit/s、115200bit/s 八种波特率。

10

			×
串口号 <u>Conti</u> ▼ <u>测试波特率</u> <u>查询</u> <u>设置</u> <u>3</u>		设置	
温湿度类 水浸 烟感 红外 光照度类 气体类 风速 风向 土壤 气象传感器 电流电压 油烟系类 土壤温度含水率 土壤含水率 土壤电导率 土壤形 土壤形力 土壤五插针 管式土壤 土壤热通量	电子水	(尺 倾角	••
土壤热通量 ₩/m2 查询			
「 实时			

第4章通信协议

4.1 通讯基本参数

编码	8 位二进制				
数据位	8 位				
奇偶校验位	无				
停止位	1位				
错误校验	CRC(冗余循环码)				
波特率	1200bit/s、2400bit/s、4800bit/s、9600bit/s、19200bit/s、38400bit/s、5 7600bit/s、115200bit/s可设,出厂默认为4800bit/s				

4.2 数据帧格式定义

采用 ModBus-RTU 通讯规约,格式如下:

初始结构 ≥4 字节的时间

地址码 =1 字节

功能码 =1 字节

数据区 =N 字节

错误校验 = 16 位 CRC 码

结束结构 ≥4 字节的时间

地址码:为变送器的地址,在通讯网络中是唯一的(出厂默认 0x01)。

功能码: 主机所发指令功能指示,本变送器可用功能码 0x03(读取寄存器数据) 0x06(写入寄存器数据)。

数据区:数据区是具体通讯数据,注意 16bits 数据高字节在前!

CRC 码:二字节的校验码。

主机问询帧结构:

地址码	功能码	寄存器起始地址	寄存器长度	校验码低字节	校验码高字节
1 字节	1 字节	2 字节	2 字节	1 字节	1字节

从机应答帧结构:

地址码	功能码	有效字节数	数据一区	数据二区	数据N区	校验码
1 字节	1 字节	1 字节	2 字节	2 字节	2 字节	2 字节

4.3 寄存器地址

寄存器地 址	PLC或组态地 址	内容	操作	定义说明
0000 H	40001 (十进制)	土壤水势 值	03/04	土壤水势实时值
0050 H	40081(十进制)	偏差值	03/04/06/10	土壤水势偏差值 (-200~200)
07D0 H	42001 (十进制)	设备地址	03/04/06/10	1~254(出厂默认1)
07D1 H	42002 (十进制)	设备波特率	03/04/06/10	0代表2400 1代表4800 2代表9600 3代表19200 4代表38400 5代表57600 6代表115200 7代表1200

4.4 通讯协议示例以及解释

举例:读取水势数值

问询帧

地址码	功能码	起始地址	数据长度	校验码低字节	校验码高字节
0x01	0x03	0x00 0x00	0x00 0x01	0x84	0x0A

应答帧

地址码	功能码	返回有效字节 数	土壤水势 值	校验码低字节	校验码高字节
0x01	0x03	0x02	0xFC 0x7B	0xB9	0x67

计算:

FC7B(十六进制)=-385=> 土壤水势值=-38.5kPa

第5章常见问题及解决方法

设备无法连接到 PLC 或电脑

可能的原因:

1)电脑有多个 COM 口,选择的口不正确。

2)设备地址错误,或者存在地址重复的设备(出厂默认全部为 0x01)。

3)波特率,校验方式,数据位,停止位错误。

4)485 总线有断开,或者 A、B 线接反。

5)设备数量过多或布线太长,应就近供电,加485增强器,同时增加120Ω终端 电阻。

6)USB转485驱动未安装或者损坏。

7)设备损坏。