

土壤氮磷钾三合一 肥力传感器 (485型)

PR-3000-TR-NPK-N01 Ver 2.0

目录

第	1 章 产品简介	.3
	1.1 产品概述	.3
	1.2 功能特点	.3
	1.3 主要参数	.3
	1.4 系统框架图	.4
	1.5 产品选型	.5
第	2 章 硬件连接	.5
	2.1 设备安装前检查	.5
	2.2 接口说明	.5
	2.2.1 传感器接线	.5
第	3 章 使用方法	.6
	3.1 速测方法	.6
	3.2 埋地测量法	.6
	3.3 注意事项	.7
第	4 章 配置软件安装及使用	.7
	4.1 传感器接入电脑	.7
	4.2 传感器监控软件的使用	.8
第	5 章 通信协议	.9
	5.1 通讯基本参数	.9
	5.2 数据帧格式定义	.9
	5.3 寄存器地址	.9
	5.4 通讯协议示例以及解释	10
第	6章 常见问题及解决方法	12

第1章产品简介

1.1 产品概述

土壤氮磷钾传感器通过测量土壤中电导率含量间接反映土壤肥力,从而推测 出氮磷钾含量来判断土壤的肥沃程度,进而方便了客户系统的评估土壤情况。

1.2 功能特点

广泛适用于稻田、大棚种植、水稻、蔬菜种植、果园苗圃、花卉以及土壤研 究等。

1.3 主要参数

直流供电 (默认)	DC 5-30V				
最大功耗	≤0.15W (@12V DC, 25°C)				
工作温度	0℃~55℃				
<i>每1</i> 米/四 公 米	量程	1-1999 mg/kg(mg/L)			
<u> </u>	分辨率	1 mg/kg(mg/L)			
响应时间	<18				
防护等级	IP68				
探针材料		不锈钢			
密封材料		黑色阻燃环氧树脂			
默认线缆长度	2米,线缆长度可按要求定制				
外形尺寸	45*15*123mm				
输出信号	RS485(Modbus 协议)				

壳体尺寸

设备尺寸图(单位: mm)

1.4 系统框架图

单接

本产品也可以多个传感器组合在一条 485 总线使用,理论上一条总线可以 254 个 485 传感器,另一端接入带有 485 接口的 PLC、通过 485 接口芯片连接单 片机,或者使用 USB 转 485 即可与电脑连接,使用我公司提供的传感器配置工 具进行配置和测试(在使用该配置软件时只能接一台设备)。

多接

1.5 产品选型

PR-					公司代号
	3000-				
		TR-			土壤检测外壳
			N-		土壤含氮量变送器
			P-		土壤含磷量变送器
			K-		土壤含钾量变送器
			NPK-		土壤氮磷钾三合一变送器
				N01	RS485(Modbus 协议)

第2章硬件连接

2.1 设备安装前检查

设备清单:

- 变送器设备1台
- 合格证、保修卡

2.2 接口说明

电源接口为宽电压电源输入 5-30V 均可。485 信号线接线时注意 A\B 两条 线不能接反,总线上多台设备间地址不能冲突。

2.2.1 传感器接线

线色	说明	备注
棕色	电源正	5~30V DC
黑色	电源地	GND
黄色	485-A	485-A
蓝色	485-B	485-B

第3章使用方法

3.1 速测方法

选定合适的测量地点,避开石块,确保钢针不会碰到坚硬的物体,按照所需测量深度抛开表层土,保持下面土壤原有的松紧程度,紧握传感器垂直插入土壤,插入时不可左右晃动,一个测点的小范围内建议多次测量求平均值。

3.2 埋地测量法

垂直挖直径>20cm的坑,在既定的深度将传感器钢针水平插入坑壁,将坑填埋严实,稳定一段时间后,即可进行连续数天,数月乃至更长时间的测量和记录。

3.3 注意事项

1、测量时钢针必须全部插入土壤里。

2、避免强烈阳光直接照射到传感器上而导致温度过高。野外使用注意防雷击。

3、勿暴力折弯钢针,勿用力拉拽传感器引出线,勿摔打或猛烈撞击传感器。

4、传感器防护等级 IP68,可以将传感器整个泡在水中。

5、由于在空气中存在射频电磁辐射,不宜长时间在空气中处于通电状态。

6、氮磷钾每次测量之前请根据被测量要素先进行标定后进行测量。

第4章 配置软件安装及使用

我司提供配套的"485参数配置软件",可以方便的使用电脑读取传感器的参数,同时灵活的修改传感器的设备 ID 和地址。

注意,使用软件自动获取时需要保证 485 总线上只有一个传感器。

4.1 传感器接入电脑

将传感器通过 USB 转 485 正确的连接电脑并提供供电后,可以在电脑中 看到正确的 COM 口("我的电脑— 属性—设备管理器—端口"里面查看 COM 端口)。

打开资料包,选择"调试软件"---"485参数配置软件",找到 21.exe 打开即可。

如果在设备管理器中没有发现 COM 口,则意味您没有安装 USB 转 485 驱动(资料包中有)或者没有正确安装驱动,请联系技术人员取得帮助。

4.2 传感器监控软件的使用

 ①、配置界面如图所示,首先根据 3.1 章节的方法获取到串口号并选择正确的 串口。

②、点击软件的测试波特率,软件会测试出当前设备的波特率以及地址,默认波 特率为 4800bit/s,默认地址为 0x01。

③、根据使用需要修改地址以及波特率,同时可查询设备的当前功能状态。

④、如果测试不成功,请重新检查设备接线及485驱动安装情况。

-		2.1		
	请选择串口号:	COM4 💌	测试波特率]
	设备地址:	1		设置
	设备波特率:	4800		
	温度值:			
	湿度值:		查询	
	水漫状态:			
	断电状态:		查询	
	光照度调			令数设定
	co			
	遥信输出延时	设备地址:1 波	(特率:4800	设置
	遥信常开常闭设置			设置
	湿度上的		确定	设置
	湿度下的		WOLE	设置
	温度上限:			 设置
	温度下限:			设置
	湿度回差:		查询	设置
	温度回差:		查询	设置
	湿度偏差:			设置
	温度偏差:			设置
		液晶控制模式:	液晶控制模式设计	置
	无线温湿度变	送器参数设置:	无线参数设置	1
			-	-

第5章通信协议

5.1 通讯基本参数

编 码	8 位二进制
数据位	8 位
奇偶校验位	无
停止位	1位
错误校验	CRC(冗余循环码)
波特率	2400bit/s、4800bit/s、9600 bit/s 可设,出厂默认为 4800bit/s

5.2 数据帧格式定义

采用 Modbus-RTU 通讯规约,格式如下:

初始结构 ≥4 字节的时间

地址码 =1 字节

功能码 =1 字节

数据区 =N 字节

错误校验 = 16 位 CRC 码

结束结构 ≥4 字节的时间

地址码:为变送器的地址,在通讯网络中是唯一的(出厂默认 0x01)。

功能码: 主机所发指令功能指示,本变送器只用到功能码 0x03 (读取寄存器数据)。

数据区:数据区是具体通讯数据,注意 16bits 数据高字节在前!

CRC 码:二字节的校验码。

主机问询帧结构:

地址码	功能码	寄存器起始地址	寄存器长度	校验码低位	校验码高位
1 字节	1 字节	2 字节	2 字节	1 字节	1 字节

从机应答帧结构:

地址码	功能码	有效字节数	数据一区	第二数据区	第N数据区	校验码
1字节	1 字节	1 字节	2 字节	2 字节	2 字节	2 字节

5.3 寄存器地址

寄存器地	PLC或组态地	中应	攝佐	会 议说明
址	址	内谷	採作	上 义
001E H	40031 (十进制)	氮含量	只读	氮含量实时值

001F H	40032 (十进制)	磷含量	只读	磷含量实时值
0020 H	40033 (十进制)	钾含量	只读	钾含量实时值
03E8 H	41001 (十进制)	氮含量系数 高十六位	读写	真实值
03E9 H	41002 (十进制)	氮含量系数 低十六位	读写	(IEEE754标准 浮点型)
03EA H	41003 (十进制)	氮含量校准值	读写	整数
03F2 H	41011 (十进制)	磷含量系数 高十六位	读写	真实值
03F3 H	41012 (十进制)	磷含量系数 低十六位	读写	(IEEE754标准 浮点型)
03F4 H	41013 (十进制)	磷含量校准值	读写	整数
03FC H	41021 (十进制)	钾含量系数 高十六位	读写	真实值
03FD H	41022 (十进制)	钾含量系数 低十六位	读写	(IEEE754标准 浮点型)
03FE H	41023 (十进制)	钾含量校准值	读写	整数
07D0 H	42001 (十进制)	设备地址	读写	1~254(出厂默认1)
07D1 H	42002 (十进制)	设备波特率	读写	0代表2400 1代表4800 2代表9600

5.4 通讯协议示例以及解释

5.4.1 举例:读取设备地址 0x01 的氮含量实时值

问询帧

地址码	功能码	起始地址	数据长度	校验码低字 节	校验码高字 节
0x01	0x03	0x00 0x1E	0x00 0x01	0xE4	0x0C

应答帧

地址码	功能码	返回有效字节 数	氮含量	校验码低字 节	校验码高字 节
0x01	0x03	0x02	0x00 0x20	0xB9	0x9C

氮含量计算:

氮含量: 0020 H (16 进制) = 32 =>氮= 32mg/kg

5.4.2 举例:读取设备地址 0x01 的磷含量实时值

问询帧

地址码	功能码	起始地址	数据长度	校验码低字 节	校验码高字 节
0x01	0x03	0x00 0x1F	0x00 0x01	0xB5	0xCC

应答帧

地址码	功能码	返回有效字节 数	磷含量	校验码低字 节	校验码高字 节
0x01	0x03	0x02	0x00 0x25	0x79	0x9F

磷含量计算:

磷含量: 0025 H (16 进制) = 37 =>磷=37mg/kg

5.4.3 举例:读取设备地址 0x01 的钾含量实时值

问询帧

地址码	功能码	起始地址	数据长度	校验码低字 节	校验码高字 节
0x01	0x03	0x00 0x20	0x00 0x01	0x85	0xC0

应答帧

地址码	功能码	返回有效字节 数	钾含量	校验码低字 节	校验码高字 节
0x01	0x03	0x02	0x00 0x30	0xB8	0x50

钾含量计算:

钾含量: 0030 H (16 进制) = 48 =>钾=48mg/kg

第6章 常见问题及解决方法

无输出或输出错误

可能的原因:

①、电脑有 COM 口,选择的口不正确。

②、波特率错误。

③、485总线有断开,或者 A、B线接反。

④、设备数量过多或布线太长,应就近供电,加485增强器,同时增加120Ω终端电阻。

⑤、USB转485驱动未安装或者损坏。

⑥、设备损坏。