

工业风管式液晶 温度传感器 (485型)

Ver 2.0

目录

1	第 1 章 产品简介	3
	1.1 产品概述	3
	1.2 功能特点	3
	1.3 主要参数	3
	1.4 系统框架图	4
	1.5 产品选型	5
	1.6 产品外观	5
1	第 2 章 硬件连接	6
	2.1 设备安装前检查	6
	2.2 接口说明	6
	2.2.1 传感器接线	6
	2.3 安装方式	7
	2.4 面板显示说明	7
1	第 3 章 配置软件安装及使用	8
	3.1 传感器接入电脑	8
	3.2 传感器监控软件的使用	8
1	第 4 章 通信协议	. 10
	4.1 通讯基本参数	. 10
	4.2 数据帧格式定义	. 10
	4.3 寄存器地址	. 10
	4.4 通讯协议示例以及解释	11
1	第 5 章 按键操作说明	. 12
1	第 6 章 常见问题及解决方法	. 13

第1章产品简介

1.1 产品概述

工业风管式温度传感器采用我公司最新的温度测量技术。输出信号类型为 RS485,最远可通信 2000 米,标准的 ModBus 协议,支持二次开发;广泛应用 于楼宇自动化、气候与暖通信号采集、大棚温室以及医药化工等行业。

1.2 功能特点

- 采用高精度温度测量单元,典型温度年漂移≤0.03℃。
- 采用专用的 485 电路,标准 ModBus-RTU 通信协议,通信地址及波特率可设置。
- 现场可通过按键修改地址、波特率。
- 交直流供电均可, DC12~36V 或者 AC24V(±20%)。
- 滑动式法兰,安装高度可调节。

1.3 主要参数

供电	DC12~36V 或者 AC24V (±20%)			
最大功耗	1.2W			
精度	温度	±0.2°C (25°C)		
温度量程		-40℃~120℃ 默认: -40℃~+80℃		
传感器电路工作温湿	-20℃~+60℃,0%RH~99.9%RH(非结露)			
度				
探头工作温度	-40℃~120℃ 默认: -40℃~+80℃			
探头工作湿度	0%RH-100%RH			
长期稳定性	温度	≪0.03°C/y		
响应时间1	温度 ≤25s (1m/s 风速 ²)			
允许最大气流速度	16m/s			
输出信号		RS485(ModBus 协议)		

¹响应时间为τ63时间。

²风速是指传感器内部敏感材料处风速,测试环境风速为10²m/ms时,风向垂直于传感器采集口,传感器内部敏感材料处风速约为1m/s。

整体尺寸:

1.4 系统框架图

本产品也可以多个传感器组合在一条 485 总线使用,理论上一条总线可以 254 个 485 传感器,另一端接入带有 485 接口的 PLC、通过 485 接口芯片连接单 片机,或者使用 USB 转 485 即可与电脑连接,使用我公司提供的传感器配置工 具进行配置和测试(在使用该配置软件时只能接一台设备)。

4

1.5 产品选型

SN-					公司代号
	3009C-				工业风管壳
		WD-			温度变送、传感器
			N01-		RS485(ModBus 协议)
			LCD		带液晶显示(两线制无此选型)

1.6 产品外观

第2章硬件连接

2.1 设备安装前检查

设备清单:

- 温度传感器设备1台
- 合格证、保修卡、校准报告等
- USB 转 485 (选配)

2.2 接口说明

宽电压电源输入 10~30V 均可。485 信号线接线时注意 A\B 两条线不能接反, 总线上多台设备间地址不能冲突。

2.2.1 传感器接线

	电路标识	说明
电	VCC	电源正(10~30V DC)
源	GND	电源负
通	485A	485-A
信	485B	485-B

	棕线(V+)	电源(VDC)
VCC		U
GND	黑线(V-)	
4854	黄线(A)	采集设备
485B	蓝线(B)	PC机
1050		

RS485接线示意图

(该设备默认不提供通信线,线色仅供参考)

2.3 安装方式

法兰盘安装:

2.4 面板显示说明

若设备地址小于100,设备地址显示位置处显示十进制地址;若设备地址大于100,则设备地址显示位置处显示十六进制地址。

第3章 配置软件安装及使用

我司提供配套的"485参数配置软件",可以方便的使用电脑读取传感器的参数,同时灵活的修改传感器的设备 ID 和地址。

注意,使用软件自动获取时需要保证 485 总线上只有一个传感器。

3.1 传感器接入电脑

将传感器通过 USB 转 485 正确的连接电脑并提供供电后,可以在电脑中 看到正确的 COM 口("我的电脑— 属性—设备管理器—端口"里面查看 COM 端口)。

打开资料包,选择"调试软件"---"485参数配置软件",找到 ^{21.exe}打 开即可。

RS485ControlV

如果在设备管理器中没有发现 COM 口,则意味您没有安装 USB 转 485 驱动(资料包中有)或者没有正确安装驱动,请联系技术人员取得帮助。

3.2 传感器监控软件的使用

 ①、配置界面如图所示,首先根据 3.1 章节的方法获取到串口号并选择正确的 串口。

②、点击软件的测试波特率,软件会测试出当前设备的波特率以及地址,默认波 特率为 4800bit/s,默认地址为 0x01。

③、根据使用需要修改地址以及波特率,同时可查询设备的当前功能状态。

④、如果测试不成功,请重新检查设备接线及485驱动安装情况。

30受达諸能宣软件V2.1		
请选择串口号: COM4 🚽	测试波特率]
设备地址: 1		设置
设备波特率: 4800		设置
温度值:	查询	
湿度值:	查询	
水浸状态:	查询	
断电状态:	查询	
光照了测试结果		全 数设定
со	-	
遥信输出延时 设备地址:1 波	特率:4800	设置
遥信常开常闭设 是		设置
湿度上的	确定	设置
湿度下		设置
温度上限:	查询	设置
温度下限:		设置
湿度回差:	查询	设置
温度回差:	查询	设置
湿度偏差:		设置
温度偏差:		设置
液晶控制模式:	液晶控制模式设	置
		1

第4章通信协议

4.1 通讯基本参数

编 码	8位二进制		
数据位	8 位		
奇偶校验位	无		
停止位	1位		
错误校验	CRC(冗余循环码)		
波特率	1200bit/s、2400bit/s、4800bit/s、9600bit/s、19200bit/s、38400bit/s、57600 bit/s、115200bit/s 可设,出厂默认为 4800bit/s。		

4.2 数据帧格式定义

采用 Modbus-RTU 通讯规约,格式如下:

初始结构 ≥4 字节的时间

地址码 =1 字节

功能码 =1 字节

数据区 =N 字节

错误校验 = 16 位 CRC 码

结束结构 ≥4 字节的时间

地址码:为传感器的地址,在通讯网络中是唯一的(出厂默认 0x01)。

功能码: 主机所发指令功能指示,本传感器只用到功能码 0x03 (读取寄存器数据)。

数据区:数据区是具体通讯数据,注意 16bits 数据高字节在前!

CRC 码:二字节的校验码。

主机问询帧结构:

地址码	功能码	寄存器起始地址	寄存器长度	校验码低位	校验码高位
1 字节	1 字节	2 字节	2 字节	1 字节	1 字节

从机应答帧结构:

地址码	功能码	有效字节数	数据一区	第二数据区	第 N 数据区	校验码
1 字节	1字节	1 字节	2 字节	2 字节	2 字节	2 字节

4.3 寄存器地址

寄存器地址	PLC或组态地址	山穴	士持功能研	2円 日
(16进制)	(10进制)		又付功能的	

0001 H	40002	温度	0x03/0x04	温度实时值(扩大10倍)
0050 H	40081	温度校准值	0x03/0x04/0x06	整数(扩大10倍)
07D0 H	42001	设备地址	0x03/0x04/0x06	1~254(出厂默认1)
		设备波特率		0代表2400
	12002		0x03/0x04/0x06	1代表4800
				2代表9600
07D1 U				3代表19200
	42002			4代表38400
				5代表57600
				6代表115200
				7代表1200

4.4 通讯协议示例以及解释

举例:读取设备地址 0x01 的温湿度值、修改地址

问询帧(16进制):

地址码	功能码	起始地址	数据长度	校验码低位	校验码高位	
0x01	0x03	0x00 0x00	0x00 0x02	0xD5	0xCA	

应答帧(16进制): (例如读到温度为-10.1℃)

地址码	功能码	返回有效字节数	温度值	校验码低位	校验码高位
0x01	0x03	0x04	0xFF 0x9B	0xD2	0x3D

温度计算:

当温度低于 0 ℃ 时温度数据以补码的形式上传。

温度: FF9B H(十六进制)=-101 => 温度 =-10.1℃

湿度计算:

湿度: 292 H (十六进制)= 658 => 湿度 = 65.8%RH

举例: 设备地址 0x01 修改为 0x02

问询帧(16进制): (假设修改地址为 0x02 注意: 修改地址后需断电重启设备)

地址码	功能码	起始地址	修改数值	校验码低位	校验码高位
0x01	0x06	0x07 0xD0	0x00 0x02	0x08	0x86

应答帧(16进制):

地址码	功能码	起始地址	修改数值	校验码低位	校验码高位
0x01	0x06	0x07 0xD0	0x00 0x02	0x08	0x86

设置设备的温度校准值 范围: -100.0~100.0 默认值: 0	短按◇加1,长按◇加10;短 按◇减1,长按◇减10。短按 ◎键,将显示温度校准值保 存为目标温度校准值。
设置设备的密码 范围: 000~999 默认: 888	短按 [●] 加1,短按 [●] 减1。短 按 [●] 键,左移一位。长按 [●] 键,将显示密码保存为目标密 码。

第6章常见问题及解决方法

设备无法连接到 PLC 或电脑

可能的原因:

1)电脑有多个 COM 口,选择的口不正确

2)设备地址错误,或者存在地址重复的设备(出厂默认全部为1)

3)波特率,校验方式,数据位,停止位错误

4)485 总线有断开,或者 A、B 线接反

5)设备数量过多或布线太长,应就近供电,加485增强器,同时增加120Ω终端电阻

6)USB 转 485 驱动未安装或者损坏

7)设备损坏